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Abstract. General successive convex relaxation methods (SRCMs) can be used to compute the
convex hull of any compact set, in an Euclidean space, described by a system of quadratic inequalities
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1. Introduction, SCRMs and background

Since 1960s, complementarity problems attracted a very significant attention in the
theory as well as applications of operations research. See, for instance, the book on
LCP [4]. In this paper, we consider various complementarity problems in the con-
text of Successive convex relaxation methods (SCRMs) proposed by the authors
[6, 7]. Since these methods can be used to compute the convex hull of any compact
subset of an Euclidean space described by a system of quadratic inequalities and
a compact convex set, they can be used to attack many complementarity problems
from several angles.

In the special case of 0-1 optimization problems over convex sets, or more
specially polytopes, there are many SCRMs based on lift-and-project techniques.
We also discuss some of the relationships of general SCRMs and these more spe-
cialized algorithms in solving LCPs.

Let � be an integer such that 1 < 2� � m, d ∈ Rm, and let A be a compact con-
vex subset ofRm. Consider the convex optimization problem with complementarity
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conditions:

maximize dT u

subject to u ∈ A, 0 � ui, 0 � ui+�, uiui+� = 0, ∀i ∈ {1, 2, . . . , �}.
}

(1)

First of all, it is clear that LCP, with a known upper bound on a solution of it, is a
special case of (1) (we can take m = 2� and A as an affine subspace intersected
with a large enough ball). Secondly, it is very elementary to formulate this problem
as a mixed 0-1 optimization problem with convex constraints:

maximize cT v

subject to v ∈ C0, vi ∈ {0, 1}, ∀i ∈ {m+ 1,m+ 2, . . . , n},
}

(2)

where

C0 ≡


v =




u

vm+1
...

vn


 ∈ Rm+� :

u ∈ A,
0 � ui � rivm+i ,
0 � ui+� � ri+�(1 − vm+i ),
∀i ∈ {1, 2, . . . , �}


 ,

c ≡
(

d

0

)
∈ Rm+�,

n ≡ m+ �, ri � max{ui : u ∈ A}, i ∈ {1, 2, . . . , 2�}.
In general, we allow C0 to be an arbitrary compact convex set in Rn. There are vari-
ous successive convex relaxation methods that can be applied to such a problem.

We can represent the feasible region F ⊂ Rn of (2) as

F = {v ∈ C0 : p(v) � 0, ∀p(·) ∈ PF },
where PF denotes a set consisting of quadratic functions

(v2
i − vi), (−v2

i + vi), i ∈ {m+ 1,m+ 2, . . . , n}
on Rn.

SCRMs take as input, a compact convex subset C0 of Rn and a set PF of
quadratic functions which induce a description of a compact subset F of Rn such
that

F = {x ∈ C0 : qf (x; γ, q,Q) � 0, qf (·; γ, q,Q) ∈ PF }.
Here we denote by qf (·; γ, q,Q), the quadratic function (γ + 2qT x + xTQx).
Note that the variable x is irrelevant outside a context and it will always be clear
what the variable vector is, from the context. For every compact convex relaxation
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C ⊆ C0 of F and every subset D of D ≡ {d ∈ Rn : ‖d‖ = 1},
P2(C,D) ≡{−(dT v − α(C0, d))(d̄

T
v − α(C, d̄)) : d ∈ D, d̄ ∈ D},

N̂ (C,D) ≡

v ∈ C0 :

∃V ∈ Sn such that
γ + 2qT v + Q • V � 0,
∀qf (·; γ, q,Q) ∈ PF ∪ P2(C,D)




(a Semi-Infinite LP relaxation of F ),

N̂+(C,D) ≡


v ∈ C0 :

∃V ∈ Sn such that

(
1 vT

v V

)
∈ S1+n

+ ,

γ + 2qT v + Q • V � 0,
∀qf (·; γ, q,Q) ∈ PF ∪ P2(C,D)




(a Semi-Infinite SDP relaxation of F ),

where α(C, d) ≡ max{dT v : v ∈ C} for every d ∈ D. Let Sn and S1+n
+ denote the

set of n × n symmetric matrices and the set of (1 + n)× (1 + n) symmetric pos-
itive semidefinite matrices, respectively. The corresponding variants of Successive
Semi-Infinite LP Relaxation Method (SSILPRM) and Successive SDP Relaxation
Method (SSDPRM) can be written as follows.

ALGORITHM 1.1. (SSILPRM)
Step 0: Choose a D0 ⊆ D. Let k = 0.
Step 1: If Ck = (the convex hull of F ), then stop.
Step 2: Let Ck+1 = N̂ (Ck,D0).
Step 3: Let k = k + 1, and go to Step 1.

ALGORITHM 1.2. (SSDPRM)
Steps 0, 1 and 3: The same as the Steps 0, 1 and 3 of Algorithm 1.1.
Step 2: Let Ck+1 = N̂+(Ck,D0).

To connect these algorithms to the Lovász-Schrijver procedures, we need to
introduce some additional notation. Let S be a subset of Rn. Then conv(S) denotes
the convex hull of S and cone(S) denotes the convex cone generated by all non-
negative, linear combinations of the elements of S. If S is a convex cone in Rn then
its dual is defined as

S∗ ≡ {s ∈ Rn : 〈x, s〉 � 0, ∀ x ∈ S}.
For every pair of closed convex cones K and T in R1+n, define

M(K, T ) ≡

Y =

(
λ λvT

λv λV

)
:
λ � 0, v ∈ C0, V ∈ Sn,
vi = Vii, i ∈ {m+ 1,m+ 2, . . . , n},
vT Yw � 0, ∀v ∈ T ∗, ∀w ∈ K∗


 ,

M+(K, T ) ≡

Y =

(
λ λvT

λv λV

)
:
λ � 0, v ∈ C0, V ∈ Sn,Y ∈ S1+n

+
vi = Vii, i ∈ {m+ 1,m+ 2, . . . , n},
vT Yw � 0, ∀v ∈ T ∗, ∀w ∈ K∗


 .
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Let T 0 and K0 be closed convex cones given by

T ∗
0 = cone

({(
α(C0, d)

−d

)
∈ R1+n : d ∈ D0

})
,

K0 =
{(

λ

λv

)
∈ R1+n : v ∈ C0, λ � 0

}
.

(Note that T 0 itself is defined as the dual of T ∗
0.) If C ⊆ C0 is a compact convex

relaxation of F and

K =
{(

λ

λv

)
∈ R1+m : v ∈ C, λ � 0

}
,

then

N̂ (C,D0) =
{
v ∈ Rn :

(
1 vT

v V

)
∈ M(K, T 0)

}
,

N̂+(C,D0) =
{
v ∈ Rn :

(
1 vT

v V

)
∈ M+(K, T 0)

}
.

Algorithms 1.1 and 1.2 specialized to (2) with PF = {v2
i − vi, −v2

i + vi, i ∈
{m+ 1,m+ 2, . . . , n}} can be stated in the following forms, which are essentially
the Lovász-Schrijver procedures.

ALGORITHM 1.1H (Homogeneous form of Algorithm 1.1)
Step 1: Choose a D0 ⊆ D. Define T 0 and K0 as above. Let k = 0.

Step 2: If Kk = cone

({(
1
v

)
: v ∈ F

})
then stop.

Step 3: Let Kk+1 = {Ye0 : Y ∈ M(Kk, T 0)}.
Step 4: Let k = k + 1, and go to Step 1.

ALGORITHM 1.2H (Homogeneous form of Algorithm 1.2)
Steps 0, 1 and 3: The same as Steps 0, 1 and 3 of Algorithm 1.1H, respectively.
Step 2: Let Kk+1 = {Ye0 : Y ∈ M+(Kk, T 0)}.

In this paper ej denotes the j th unit vector and e denotes the vector of all ones
(the dimensions of the vectors will be clear from the context). Let M ∈ R�×�,
q ∈ R� be given. Consider the LCP in the following form.

(LCP) Find x, s such that Mx + q = s,

x � 0, s � 0,

xisi = 0, ∀ i ∈ {1, 2, . . . , �}.
Suppose we are given B(ξ , r) ≡ {

u ∈ R2� : ‖u − ξ‖ � r
}
, an Euclidean ball

containing a solution of the LCP. More specifically, we assume that if LCP has
a solution (or solutions) then it has at least one solution inside this ball. (In the
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case of rational data (M, q), we can take B centered at the origin with the radius
bounded above by a polynomial function of the “bit size” of the data (M, q).) For
the rest of this section, we assume that the Euclidean ball with center ξ ≡ 0 and
the radius r (r is assumed given) contains some solution of the LCP.

Under the boundedness assumption above, it is particularly easy to model any
LCP as a 0-1 mixed integer programming problem, since the only nonlinear con-
straints of LCP can be expressed as

xi = 0, or si = 0, ∀ i ∈ {1, 2, . . . , �}.
Balas’ method [1] can be directly applied to such formulations. We can also apply
some variants of the Sherali-Adams reformulation linearization technique (RLT)
[12] or the Lovász-Schrijver procedures [9] to the mixed integer programming
feasibility problem:

Find x, s and z such that Mx + q = s,

0 � x � rz, 0 � s � r(e − z),

z ∈ {0, 1}�.
Note that we can eliminate the variable vector s from the formulation and apply

the SSILPR and SSDPR Methods to the following formulation:

0 � Mx + q � r(e − z),

0 � z � e, 0 � x � rz,

z2
i − zi � 0, −z2

i + zi � 0, i ∈ {1, 2, . . . , �}.
To apply the SCRMs, we can take

C0 ≡
{
v =

(
x

z

)
∈ Rn : 0 � Mx + q � r(e − z),

0 � z � e, 0 � x � rz

}
,

m ≡ �, n ≡ 2�,

PF ≡ {
(v2
i − vi), (−v2

i + vi), i ∈ {m+ 1,m+ 2, . . . , n}} .
Both algorithms, SSILPRM and SSDPRM presented above, terminate in at most

� steps. This fact can be proved easily, using the results of Balas [1], Sherali and
Adams [12], Lovász and Schrijver [9], or [6, 7]. For computational experience
on similar algorithms for similar problems see [3, 13, 15, 16] and [17]. For a
comparison and short review of various related convex relaxations for 0-1 mixed
integer programming problems see [5].

Next, we give the details of a proof of such a convergence result when the
methods are applied to a formulation of Pardalos and Rosen [11]. They homogenize
the vector q with a new continuous variable α, then they maximize α.

(MIPα) maximize α
subject to 0 � Mx + qα � e − z,

0 � x � z, 0 � α � 1, z ∈ {0, 1}�.






338 M. KOJIMA AND L. TUNÇEL

Note that
ᾱx̄

z̄


 ≡ 0

is feasible in (MIPα) and, it is easy to see that (MIPα) has an optimal solution with
α∗ > 0 iff the (LCP) has a solution (or solutions) [11]. Moreover, if

α∗
x∗
z∗




is an optimal solution of (MIPα) with α∗ > 0 then x∗/α∗ solves the (LCP) [11].
One advantage of (MIPα) is that it does not require the introduction of large,
data dependent constants (such as ri or r in some of the previous approaches we
mentioned) or their a priori estimates. Now, we take

C0 ≡

v =


αx

z


 ∈ R1+2� : 0 � Mx + qα � e − z,

0 � x � z, 0 � α � 1


 ,

m ≡ �+ 1, n ≡ 2�+ 1,

PF ≡ {
(v2
i − vi), (−v2

i + vi), i ∈ {m+ 1,m+ 2, . . . , n}} .
We have an analog of a very elementary but also a key lemma (Lemma 1.3 of

[9]) of Lovász and Schrijver (and their proof technique is adapted here). In what
follows, we refer to the vectors in the space of Kk by v. At the same time, we
refer to different subvectors of v by different names, such as x, α etc., to keep the
correspondence of elements of v and the original formulation of F clearer. The
proof of Lemma 1.3 of [9] leads to the following analogous result in our case.

LEMMA 1.3. LetD0 ⊇ {±em+1,±em+2, . . . ,±en}. Then the sequence of convex
cones {Kk : k � 0} given by Algorithm 1.1H satisfies

Kk+1 ⊆ (Kk ∩ {v : xi = 0})+ (Kk ∩ {v : (Mx + qα)i = 0}) ,
for every i ∈ {1, 2, . . . , �}, and for every k � 0.

Proof. Let

w ≡




1
ᾱ

x̄

z̄


 ∈ Kk+1.

Fix j ∈ {1, 2, . . . , �} arbitrarily. By the definition of D0 and T 0, the unit vector
e0 is in T 0. Hence, by the definition of M(Kk, T 0), Kk+1 ⊆ Kk for every k � 0.
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Therefore, w ∈ Kk. If x̄j = 0 or (Mx + qα)j = 0 then the statement of the lemma
clearly holds. So, without loss of generality, we assume x̄j > 0 and (Mx +qα)j >

0. Let Y ∈ M(Kk, T 0) such that w = Ye0. By our choice of the cone T 0, we
conclude that Yen+j and Y (e0 − en+j ) are both in Kk. Note that

w = ŵ + w̃,

where ŵ ≡ Yen+j and w̃ ≡ Y (e0 − en+j ). We will refer to the x and z parts
of the vector ŵ by x̂, ẑ etc. (Similarly for w̃.) First, since by the definition of
M(Kk, T 0), vi = Vii for every i ∈ {m+ 1,m+ 2, . . . , n}, we have z̃j = 0 which
implies x̃j = 0. Therefore, w̃ lies in the cone

(
K0 ∩ {

v : xj = 0
})

. Second, since
x̄j > 0, z̄j must be positive. Therefore, (1/z̄j )ŵ ∈ K0. Since vi = Vii for every
i ∈ {m+ 1,m+ 2, . . . , n}, ẑj = z̄j . So,

1

z̄j


α̂x̂

ẑ


 ∈ Ck,

with its zj entry equal to 1. Thus, (Mx̂ + qα̂)j = 0. Hence, ŵ is in the cone(
Kk ∩ {

v : (Mx + qα)j = 0
})

. Since the argument above is independent of the
index j the proof is complete. ✷

Note that the conclusion of the above lemma also applies to the SSDPR Method
since SSDPR Method yields at least as tight relaxations as the SSILPR Method.
Also note that the inclusion in Lemma 1.3 can sometimes be strict for the SSILPR
and SSDPR Methods. Below, F denotes the set of feasible solutions of (MIPα).

THEOREM 1.4. Both algorithms, Algorithm 1.1H and 1.2H terminate in � itera-
tions when applied to the formulation (MIPα) with our choice of PF , C0 and D0

above.
Proof. First note that

conv(F ) ⊆





αx

z


 ∈ Rn :




1
α

x

z


 ∈ Kk


 , ∀ k � 0.

Next, let i, j ∈ {1, 2, . . . , �}, i �= j . Since x � 0 and Mx + qα � 0, for all
v ∈ Kk, for every k � 0,[

(Kk ∩ {v : xi = 0})+ (Kk ∩ {v : (Mx + qα)i = 0})] ∩ {
v : xj = 0

}
= (

Kk ∩ {
v : xi = 0, xj = 0

}) + (
Kk ∩ {

v : xj = 0, (Mx + qα)i = 0
})
.

Similarly, for the intersection with
{
v : (Mx + qα)j = 0

}
.Now, we apply Lemma

1.3 repeatedly to conclude that K� is the homogenization of the convex hull of all
solutions of the LCP that lie in the original relaxation C0. ✷
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2. SCRMs applied to a smaller formulation of LCP with explicit treatment
of the disjunctive constraints

Now, we modify Pardalos-Rosen formulation and consider a formulation with fewer
variables and constraints.

(LCPα) maximize α
subject to Mx + qα � 0, x � 0, α � 0,

eT (M + I )x + (eT q + 1)α � 1,
xi(Mx + qα)i = 0, i ∈ {1, 2, . . . , �}.

It is easy to see that(
x̄

ᾱ

)
≡ 0

is feasible in (LCPα), and it is also easy to observe that (LCPα) has an optimal
solution with α∗ > 0 iff the (LCP) has a solution(or solutions). Moreover, if(

x∗
α∗

)

is an optimal solution of (LCPα) with α∗ > 0 then x∗/α∗ solves the (LCP).
Sherali, Krishnamurty and Al-Khayyal [13] also address solving LCPs via lift-

and-project methods. Their main concern seems to be practical efficiency for gen-
eral LCPs (without assuming a very special structure of the data (M, q)). To this
end, in addition to the Sherali-Adams RLT, they employ subgradient methods,
branch-and-bound algorithms and implicit enumeration techniques. Their applic-
ation of RLT to their 0-1 mixed integer programming formulation also leads to a
convex hull representation in at most � steps.

Sherali, Krishnamurty and Al-Khayyal’s mixed integer programming formula-
tion does not use upperbounds like ri or r. However, their results either rely on
the assumptions like “the set {x ∈ R� : Mx + q � 0, x � 0} is bounded”
(Proposition 2.1 of [13]) or the existence of a constant U large enough to allow
adding a constraint like eT x � U (Remark 2.2 of [13]). At least from a theoretical
point of view our approach in this section is stronger, in that our approach does not
require similar assumptions. Nevertheless, we cannot make any claims about even
the mild computational superiority of our approach.

We explicitly include the variable vector s in our discussion in this section, for
the sake of presentation. Let

C0 ≡

v =


x

s

α


 ∈ R2�+1 : s = Mx + qα � 0, x � 0, α � 0,

eT (M + I )x + (eT q + 1)α � 1,


 .

In this section, we will describe another successive convex relaxation method based
on the ideas of Balas [1], Lovász and Schrijver [9]. This method will use only
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Linear Programming (LP) relaxations. We describe the method in the original space
of F and C0. Let F(C0) denote the set of facet defining inequalities for C0. F(C0)

is the input of the algorithm which we introduce now.

ALGORITHM 2.1.
Step 0: k ≡ 0.
Step 1: F(Ck+1) ≡ F(Ck).

Step 2: For every inequality

−
�∑
i=1

(uixi + u�+i si)− u2�+1α � u0

in F(Ck) and every j ∈ {1, 2, . . . , �} solve the LP problems

(Pj ) minimize uT ξ (j)

subject to ξ
(j)

j = 1, ξ (j)�+j = 0, ξ (j) ∈ Kk,

and

(P�+j ) minimize uT ξ (�+j)

subject to ξ
(�+j)
j = 0, ξ (�+j)�+j = 1, ξ (�+j) ∈ Kk,

where Kk is the homogenization of Ck as described in Section 1. If (Pj )
is infeasible then add the equation xj = 0 (or the inequality xj � 0,
since the inequality xj � 0 is already included) to F(Ck+1). If (P�+j ) is
infeasible then add the equation sj = 0 to F(Ck+1). Otherwise, let (ξ (j))∗

and (ξ (�+j))∗ denote the optimal solutions of (Pj ) and (P�+j ) respectively.
Define yj ≡ uj−uT (ξ (j))∗, y�+j ≡ u�+j−uT (ξ (�+j))∗. Add the inequality

−
∑
i �=j
(uixi + u�+i si)− yjxj − y�+j sj − u2�+1α � u0

to F(Ck+1).
Step 3: Let k = k + 1, and go to Step 1.

Note that in iteration k, the algorithm solves (2�|F(Ck)|) LP problems. Also
note that the above algorithm makes a very explicit connection between the ‘lift-
and-project methods’ of Balas, Sherali-Adams, Lovász-Schrijver and the notion of
‘lifting a valid inequality’ as in more traditional polyhedral approaches, see [10].
Below, F denotes the set of feasible solutions of (LCPα), where s = Mx + qα.

THEOREM 2.2. Let Ck, k ∈ {1, 2, . . . } be the sequence of convex relaxations
generated by Algorithm 2.1. Then C� = conv(F ).
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Proof. We think of Kk for all k � 0, as a subset of R1+(2�+1), with the 0th
component being the homogenizing variable, the next � components representing
x, the next � components representing s and the last component representing α.
Note that

K1 ⊆ (
K0 ∩ {

v : xj = 0
}) + (

K0 ∩ {
v : sj = 0

})
iff

K∗
1 ⊇ (

K∗
0 + {−ej }

) ∩ (
K∗

0 + {−e�+j }
)
. (3)

(We used the fact that K0 ⊆ R
1+(2�+1)
+ .) Therefore, if we ensure the latter inclusion,

then Theorem 1.4 applies and we can conclude the convergence of the method in �
iterations. Recall that every vector u ∈ K∗

0 represents a valid inequality

−
�∑
i=1

(uixi + u�+isi)− u2�+1α � u0

for C0. To ensure the inclusion (3), it suffices to prove:

“For every u,w ∈ K∗
0 such that

ui = wi, ∀i /∈ {j, �+ j};uj � wj, u�+j � w�+j ,
we have y ∈ K∗

1, where yi ≡ ui,∀i �= j ; yj ≡ wj .”
This is equivalent to proving the fact that if the two inequalities

−
�∑
i=1

(uixi + u�+i si)− u2�+1α � u0, and

−
∑
i �=j
(uixi + u�+i si)− wjxj − w�+j sj − u2�+1α � u0

are valid for C0, then

−
∑
i �=j
(uixi + u�+isi)− wjxj − u�+j sj − u2�+1α � u0

is valid for C1. To compute all such inequalities defining C1, we solve for every
valid inequality

−
�∑
i=1

(uixi + u�+isi)− u2�+1α � u0

for C0 and every j ∈ {1, 2, . . . , �}, the linear programming problems

maximize β
subject to βej + δe�+j �K∗

0
u,
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and

maximize γ
subject to κej + γ e�+j �K∗

0
u.

Here, �K∗
0

denotes the partial order induced by the convex cone K∗
0 (that is, u1 �K∗

0

u2 iff (u2−u1) ∈ K∗
0). Note that both problems are always feasible. Therefore, each

of them either has an optimal solution or is unbounded. If both LPs have optimal
solutions, say β∗ and γ ∗ then we set wj ≡ uj − β∗ and u�+j ≡ u�+j − γ ∗. Since
the above two problems are LPs, we can equivalently solve their duals. Namely,
we solve the LPs:

(Pj ) minimize uT ξ (j)

subject to ξ
(j)

j = 1, ξ (j)�+j = 0, ξ (j) ∈ K0,

and

(P�+j ) minimize uT ξ (�+j)

subjcet to ξ
(�+j)
j = 0, ξ (�+j)�+j = 1, ξ (�+j) ∈ K0.

These latter two linear programming problems are precisely the ones used by Al-
gorithm 2.1. Notice that since their duals are either unbounded or have optimal
solutions, these LP problems either have optimal solutions or are infeasible. When
(Pj ) is infeasible, the equality xj = 0 is valid for F and the algorithm adds this
equality to the describing inequalities of Ck. Similarly, when (P�+j ) is infeasible,
sj = 0 is valid for F and the algorithm behaves correctly in this instance. (In
either instance, the inclusion (3) is obviously satisfied for j .) However, the proof
is not yet complete; because, the arguments so far ensure the inclusion (3) when
the algorithm is run for every valid inequality of C0. So, next we prove that what
the algorithm does (using only the facets of C0) suffices. To see this, we need to
prove that to derive the facets of K1, it suffices to start with a facet u of K0 in the
above procedure. Suppose u,w ∈ K∗

0 satisfy the above conditions but u is not facet
inducing for K∗

0. (We will prove that the valid inequality derived from u and w is
implied by some other inequalities derived from some facets u1,u2, . . . ,u� of K0.)
Since u is not facet inducing for K0, u is not an extreme ray of K∗

0. Hence, there ex-
ist extreme rays u1,u2, . . . ,u� of K∗

0 such that for some λr > 0, r ∈ {1, 2, . . . , �},∑�
r=1 λr = 1 the following conditions are satisfied:

u =
�∑
r=1

λru
r , ur0 = u0, ∀r ∈ {1, 2, . . . , �}.

Note that ur is facet inducing for each r. Let ξ r be the optimal solution of (Pj )
above for the objective function vector ur . Let ξ ∗ be an optimal solution of (Pj )
when the objective function vector is u. We claim that there exists ξ̃ ∈ K0 such
that

(ur)T ξ̃ = (ur )T ξ r , ∀r ∈ {1, 2, . . . , �}, ξ̃j = 1, ξ̃�+j = 0, ξ̃ ∈ K0.
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(This claim follows from Farkas’ Lemma, using the facts that ur ∈ K∗
0,∀r and

ξ r ∈ K0,∀r.) Thus, we have

�∑
r=1

λr(u
r )T ξ r = uT ξ̃ � uT ξ ∗.

Therefore, the inequality obtained from u is equivalent to or dominated by a non-
negative combination of the inequalities obtained from ur which induce facets of
K0. The proof is complete. ✷

We illustrated a derivation and convergence proof for a successive relaxation
method (closely related to Balas’ approach and analogous to a suggestion of Lovász
and Schrijver [9]) based on Lemma 1.3 and Theorem 1.4. Algorithm 2.1 is an
analog of a method based on relaxations Nk0 (K) from [9] (which is concerned
with the case of 0-1 integer programming). For the relationship of the methods
of [1] and [9], see Balas, Ceria and Cornuejols [2]. (Balas’ method [1], in essence,
corresponds to defining

Kk+1 ≡ (Kk ∩ {v : xk+1 = 0})+ (Kk ∩ {v : (Mx + qα)k+1 = 0}) .)
Let C(4)k , k � 0 denote the projection of Ck generated by Algorithm 2.1 onto

the coordinates(
x

α

)
.

Let C(3)k , k � 0 denote the projection of Ck, generated by Algorithm 1.1, as used in

Section 1, onto the coordinates

(
x

α

)
. Let K(4)k denote the convex cone associated

with C(4)k . From the proof of Theorem 2.2, it is easy to see that

K(4)k+1 =
�⋂
i=1

[(
K(4)k ∩ {v : xi = 0}

)
+

(
K(4)k ∩ {v : si = 0}

)]
.

Therefore, the proofs of Theorems 1.4 and 2.2 imply that

if C(4)0 ⊇ C(3)0 then C
(4)
k ⊇ C

(3)
k for all k � 0.

Thus, the SSILPR method (Algorithm 1.1) as applied in Section 1 to (MIPα) con-
verges at least as fast as Algorithm 2.1 applied to (LCPα).

We have already seen various ways of applying SCRMs to LCP problems. Since
the methods proposed in [6, 7] only require a formulation of the feasible solutions
by quadratic inequalities, we are also interested in applying the methods of [6, 7]
to the following formulation:

C0 ≡
{(
α

x

)
∈ R�+1 : Mx + qα � 0, x � 0, α � 0,

eT (M + I )x + (eT q + 1)α � 1

}
,
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and

PF ≡ {xi(Mx + qα)i � 0, i ∈ {1, 2, . . . , �}} .
The general theory of [6] implies that the SSDPR and SSILPR methods converge.
It would be interesting to characterize the conditions under which the Algorithms
3.1 and 3.2 of [7] converge in at most � iterations for the above description of PF
and C0. Also see [8], where the authors derived some necessary and some sufficient
conditions for the finite convergence of SCRMs.

3. A general linear complementarity problem

Let A : R� → R�, a linear transformation, q ∈ R� and K ⊂ R� a pointed, closed
convex cone with nonempty interior, be given. Consider the complementarity prob-
lem (CP):

(CP) Find x, s such that A(x)+ q = s,

x ∈ K, s ∈ K∗, 〈x, s〉 = 0,

recall that K∗ is the dual of K. Since K is a pointed, closed convex cone with
nonempty interior, so is K∗. Such problems were studied recently, in the context
of interior-point methods [14]. We pick η ∈ int(K), η̄ ∈ int(K∗) and we can solve
instead the optimization problem

(CPα) maximize α
subject to x ∈ K,

[
A(x)+ qα

] ∈ K∗, α � 0,
〈η̄, x〉 + 〈η,A(x)+ qα〉 + α � 1,
〈x,A(x)+ αq〉 = 0.

We choose

C0 ≡
{(
α

x

)
∈ R�+1 : x ∈ K,

[
A(x)+ qα

] ∈ K∗, α � 0,
〈η̄, x〉 + 〈η,A(x)+ qα〉 + α � 1

}
.

Note that C0 is always a compact convex set (see the next theorem). We also pick

PF ≡ { 〈x,A(x)+ αq〉, −〈x,A(x)+ αq〉 }
.

THEOREM 3.1.
(i) C0 is a compact convex set.
(ii) (CPα) has an optimal solution with α∗ > 0 iff (CP) has a solution (or

solutions).

(iii) If

(
α∗
x∗

)
is an optimal solution of (CPα) with α∗ > 0 then the pair of vectors(

x∗

α∗ ,
1

α∗A(x
∗)+ q

)
solves (CP).
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Proof.
(i) We only need to show that C0 is bounded; because, C0 is a closed and

convex subset of R�+1 by definition. Assume on the contrary that we can

take an unbounded direction

(
+α

+x

)
�= 0 in C0;

(
+α

+x

)
�= 0, +x ∈ K,+α � 0,

[
A(+x)+ q+α

] ∈ K∗,

〈η̄,+x〉 + 〈η,A(+x)+ q+α〉 ++α � 0.

Since each term in the left hand side of the last inequality is nonnegative,
we have

〈η̄,+x〉 = 0 and +α = 0.

Since η̄ ∈ int(K∗) and +x ∈ K, the first identity above implies that +x =
0. Thus, we have a contradiction to

(
+α

+x

)
�= 0.

(ii) Suppose (CPα) has an optimal solution

(
α∗
x∗

)
with α∗ > 0. Then x̄ ≡

x∗/α∗ ∈ K, s̄ ≡ (1/α∗)A(x∗)+ q ∈ K∗.We have

〈x̄, s̄〉 = 〈x̄,A(x̄)+ q〉 = 1

(α∗)2
〈x∗,A(x∗)+ α∗q〉 = 0.

Therefore, (x̄, s̄) solves (CP). For the converse, let (x̄, s̄) be a solution of
(CP). Let

ζ ≡ 〈η̄, x̄〉 + 〈η, s̄〉 � 0, α∗ = 1

ζ + 1
and x∗ = x̄

ζ + 1
.

Then

(
α∗
x∗

)
is a feasible solution of (CPα). But the feasible region of (CPα)

is compact and nonempty, its objective function is linear, hence, (CPα) has
optimal solution (or solutions). Since we already showed a solution with
positive objective value, the optimum value is positive.

(iii) This claim follows from the proof of (ii).
✷

Theorem 3.1 shows that we can apply SCRMs to (CPα) with the above C0 and
PF and solve the original, general problem (CP).
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4. Conclusion

We reviewed and presented various ways of using SCRMs to solve LCPs. Our point
of view was theoretical. In Section 2, we first showed how to extend Pardalos-
Rosen formulation to a more compact formulation of LCP. Then, we applied the
ideas of Balas, Sherali-Adams and Lovász-Schrijver to derive a similar method
with the same nice property of termination within � major iterations. Our approach
does not make any assumptions on the data of the LCP. However, this is only
a theoretical improvement over the existing work of [13]. Some of the insights,
the algorithm of Section 2, the formulations of Sections 2 and 3 may help im-
prove some practical applications; but, a successful computational procedure will
still have to incorporate techniques like branch-and-bound and/or those of [13].
In Section 3 we provided yet a more theoretical new result and proved (by very
elementary means) that SCRMs and (more importantly) the convergence theory of
[6, 7] are applicable to a very general class of complementarity problems.
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